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Abstract

In the present work, we consider the linear hydrodynamic stability problems of viscoelastic fluids in arbitrary finite

domains. The effects of domain shapes on the critical Rayleigh number and convection pattern are investigated by

means of a linear stability analysis employing a Chebyshev pseudospectral method. It is shown that the domain shape

can change the viscoelastic parameter values where the Hopf bifurcation occurs in the Rayleigh–B�enard convection.

The results of the present investigation may be exploited to design shapes of convection box where the Hopf bifurcation

occurs at realistic low values of Deborah number. This will enhance the usefulness of the natural convection system as a

rheometry tool.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In our previous works [1–3], we have investigated the

Rayleigh–B�enard convection problems of viscoelastic

fluids in finite rectangular domains with no-slip side-

walls. With the help of a Chebyshev pseudospectral

method, the effects of box aspect ratio and various rhe-

ological parameters on the critical Rayleigh number and

convection cell size have been studied and, furthermore,

the natural convection system is suggested as a new

practical tool of rheometry. In the present work, we

study the Rayleigh–B�enard convection of viscoelastic

fluids in arbitrary shaped domains. Our purpose is to

investigate how the shape of the domain changes the

critical Rayleigh number and the bifurcation sequences.

Special interest is in the shape where the Hopf bifurca-

tion occurs at a lower values of Deborah number. When

we want to adopt the natural convection system as a tool

of rheometry, it is more useful to invoke various phe-
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nomena peculiar to the viscoelasticity in the convection

box. But it is shown that the Hopf bifurcation in the

Rayleigh–B�enard convection of viscoelastic fluids in the

horizontally unbounded domain occurs at unrealistically

high values of Deborah number[4]. Thus, if a specific

shape of the convection box induces the Hopf bifurcation

at a lower Deborah number, that shaped box may be

considered as a better equipment to estimate the rheo-

logical parameter values of a specific viscoelastic fluid.

Until now, there have been no appropriate analysis

tools for this interesting problems of hydrodynamic

stability in arbitrary shaped domains. But recently we

proposed a method of linear and nonlinear hydrody-

namic stability analysis in confined rectangular domains

with no-slip walls [1–3] by exploiting the Chebyshev

pseudospectral method [5]. In the present investigation,

we employ the same Chebyshev pseudospectral method

to solve the linear Rayleigh–B�enard convection prob-

lems in two-dimensional arbitrary finite domains. After

transforming the arbitrary shaped physical domains to a

square computational domain, we reformulate the

Boussinesq equation using the stream function so that

the incompressibility condition is imposed exactly. The

discretization through the Chebyshev pseudospectral
ed.
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Nomenclature

a rheological parameter defined in Eq. (4)

dx half width of the domain

dy half depth of the domain

D Jaumann differential operator defined in Eq.

(10)

gr gravitational constantffiffiffi
g

p
Jacobian of domain transformation

gi the ith contravariant basis vector (Eq. (35))

gij contravariant metric tensor

k thermal conductivity

P pressure

Pr Prandtl number

R Rayleigh number

S difference of normal stresses (Eq. (25))

T temperature

U sum of normal stresses (Eq. (26))

v velocity

Greek symbols

a thermal expansion coefficient

C time derivative of the stream function

_c rate of deformation tensor

� rheological parameter defined in Eq. (4)

j rheological parameter defined in Eq. (4)

k Deborah number

l0 viscosity

s stress tensor

W stream function

x spin tensor
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method yields algebraic eigenvalue problems which can

be solved to find the eigenvalues and eigenvectors nee-

ded in the linear stability analysis. A very general con-

stitutive equation is employed in the present work that

encompasses the Maxwell model, Oldroyd model and

Phan–Thien–Tanner model. The effects of the shape of

the domain and rheological parameter values on the

critical Rayleigh number and convection pattern are

examined.
2. Governing equations

We consider a Boussinesq fluid in a two-dimensional

arbitrary finite domain whose bottom is maintained at a

higher temperature than the top. The shapes of the do-

main are such that the top and bottom are flat, whereas

the sidewalls are of arbitrary shapes. Governing equa-

tions in dimensionless variables may be written as:

r � v ¼ 0; ð1Þ

ov

ot
þ v � rv ¼ �PrrP þ Prr � sþ RPrT j; ð2Þ

oT
ot

þ v � rT ¼ r2T ; ð3Þ

sþ k jðtrsÞs
�

þDs� 1

2
aðs � _cþ _c � sÞ

�

¼ _cþ �k D _c
n

� a _c � _c
o
: ð4Þ

In the above equations, the dimensionless variables have

been defined by the following equations, where the

superscript asterisk is used to denote the dimensional

quantities.
x ¼ x�

dy
; y ¼ y�

dy
; t ¼ jt�

d2
y

; v ¼ dyv�

j
;

T ¼ T � � T �
cold

T �
hot � T �

cold

; P 0 ¼
d2
y p

�

l0j
; s ¼ dys�

l0k
; ð5Þ

where T � is the dimensional temperature field, T �
cold the

temperature at the top boundary, T �
hot the temperature at

the bottom boundary, t� the time, v� the velocity field, P �

the pressure field, s� the stress tensor, j the thermal

diffusivity, q the density, l0 the viscosity, dy the char-

acteristic depth of the domain. In Eq. (2), P is the

modified pressure given by

P ¼ P 0 � ðT �
cold � T �

hotÞ
2

q0d
3
y

kl0

agry ð6Þ

and a is the thermal expansion coefficient. The dimen-

sionless group R is the Rayleigh number and Pr is the

Prandtl number defined as follows:

Ra ¼ agr
ðT �

hot � T �
coldÞd3

y q0

jl0

; ð7Þ

Pr ¼ l0

jq0

: ð8Þ

In Eq. (4), k is the Deborah number defined by

k ¼ kk�

d2
y

; ð9Þ

where k� is the stress relaxation time. The Jaumann

differential operator is defined as

D � o

ot
þ v � r þ 1

2
ðx � � � xÞ; ð10Þ
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where the spin tensor x is given by

x � rv� ðrvÞT ð11Þ

and rate of deformation tensor _c is

_c ¼ rvþ ðrvÞT: ð12Þ
With an appropriate isothermal sidewalls, there exists a

critical Rayleigh number for the domains under consid-

eration below which there is no fluid motion. The basic

state or the conduction state ðvs; T sÞ that prevails in the

system below the critical Rayleigh number is given by;

vs ¼ 0; ð13Þ

r2T s ¼ 0: ð14Þ

The relevant boundary conditions are; no velocity slip

on all bounding walls, T s ¼ 1:0 at the bottom, T s ¼ 0:0
at the top boundary and Dirichlet temperature bound-

ary condition on the sidewalls, where temperature de-

creases linearly with respect to the height. If we define

the deviational temperature H by

H ¼ T � T s: ð15Þ

Eqs. (1)–(3) may be rewritten as;

r � v ¼ 0; ð16Þ

ov

ot
þ v � rv ¼ �PrrP þ Prr � sþ RPrHj; ð17Þ

oH
ot

þ v � rHþ v � rT s ¼ r2H: ð18Þ

The relevant boundary conditions are; v ¼ 0 and H ¼ 0

on all bounding walls. The stream function W is em-

ployed instead of v and P to analyze flows in two-

dimensional domains. In terms of the stream function,

(4) and (16)–(18) may be rewritten after deleting non-

linear terms [1]:

o

ot
r2Wþ RPr

oH
ox

� Pr
o2S
oxoy

� PrDsxy ¼ 0; ð19Þ

oH
ot

� oT s

oy
oW
ox

þ oT s

ox
oW
oy

�r2H ¼ 0; ð20Þ

sxy þ k
sxy
ot

¼ DWþ �k
o

ot
DW; ð21Þ

S þ k
oS
ot

¼ 4
o2W
oxoy

þ 4�k
o

ot
o2W
oxoy

; ð22Þ

U þ k
oU
ot

¼ 0; ð23Þ

where

D � o2

oy2
� o2

ox2
; ð24Þ

S � sxx � syy ; ð25Þ
U � sxx þ syy : ð26Þ

The boundary conditions are such that the stream

function W and its normal derivative, W and oW
on , and H

are zero at the walls. In (20), oT s

ox ¼ 0 if T s is determined

with the isothermal sidewalls whose temperature de-

creases linearly with respect to the height for the do-

mains where the top and bottom boundaries are flat.

Removing S and sxy in (19) in favor of W by exploiting

(21) and (22), Eq. (19) becomes

1

�
þ k

o

ot

�
r2 oW

ot
þ RPr

o

ox
1

�
þ k

o

ot

�
H

� Pr
o2

oxoy
4 1

�
þ �k

o

ot

�
o2W
oxoy

� PrD 1

�
þ �k

o

ot

�
DW ¼ 0: ð27Þ

Finally, the governing equations for the linear stability

analysis may be rearranged in the following form:

oW
ot

¼ C; ð28Þ

k
o

ot
r2Cþ RPrk

o

ot
oH
ox

¼ Prr4Wþ Pr�kr4C

�r2C� RPr
oH
ox

; ð29Þ

oH
ot

¼ oT s

oy
oW
ox

� oT s

ox
oW
oy

þr2H: ð30Þ

The boundary condition for C are the same as those for

W, since the boundary conditions are time-independent.

Now, we transform the arbitrary shaped physical

domain ðx; yÞ to a fixed square computational domain

ðn; gÞ. Then the governing equations (28)–(30) may be

rewritten in the computational domain as;

oW
ot

¼ C; ð31Þ

k
o

ot
1ffiffiffi
g

p
o

oni
ffiffiffi
g

p
gij

o

onj

� �� �
Cþ RPrk

o

ot
�ij3

1ffiffiffi
g

p
oH

oni
ynj

� �

¼ Pr
1ffiffiffi
g

p
o

oni
ffiffiffi
g

p
gij

o

onj
1ffiffiffi
g

p
o

onk
ffiffiffi
g

p
gkl

oW

onl

� �� �� �

þ Pr�k
1ffiffiffi
g

p
o

oni
ffiffiffi
g

p
gij

o

onj
1ffiffiffi
g

p
o

onk
ffiffiffi
g

p
gkl

oC

onl

� �� �� �

� 1ffiffiffi
g

p
o

oni
ffiffiffi
g

p
gij

oC

onj

� �
� RPr�ij3

1ffiffiffi
g

p
oH

oni
ynj ; ð32Þ

oH
ot

¼ �ij3
1ffiffiffi
g

p
oW

oni
ynj

� �
�kl3

1ffiffiffi
g

p
oT s

onl
xnk

� �

� �ij3
1ffiffiffi
g

p
oW

onj
xni

� �
�kl3

1ffiffiffi
g

p
oT s

onk
ynl

� �

þ 1ffiffiffi
g

p
o

oni
ffiffiffi
g

p
gij

oH

onj

� �
; ð33Þ
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where

ffiffiffi
g

p ¼ ox
on

oy
og

� oy
on

ox
og

; ð34Þ

g1 ¼ 1ffiffiffi
g

p i
oy
og

�
� j

ox
og

�
; ð35Þ

g2 ¼ 1ffiffiffi
g

p
�
� i

oy
on

þ j
ox
on

�
; ð36Þ

gij ¼ gi � gj: ð37Þ

Repeated indices imply summation over 1 and 2,

xni � ox
oni
, yni � oy

oni
and n1 ¼ n, n2 ¼ g. The transformation

between the physical domain ðx; yÞ and the computa-

tional domain ðn; gÞ is performed by means of the fol-

lowing set of elliptic equations [6].

ð ffiffiffi
g

p Þ2g11 o
2x

on2
þ 2ð ffiffiffi

g
p Þ2g12 o2x

onog
þ ð ffiffiffi

g
p Þ2g22 o

2x
og2

¼ �ð ffiffiffi
g

p Þ2 P
ox
on

�
þ Q

ox
og

�
; ð38Þ

ð ffiffiffi
g

p Þ2g11 o
2y

on2
þ 2ð ffiffiffi

g
p Þ2g12 o2y

onog
þ ð ffiffiffi

g
p Þ2g22 o

2y
og2

¼ �ð ffiffiffi
g

p Þ2 P
oy
on

�
þ Q

oy
og

�
: ð39Þ

The variables P and Q in (38) and (39) are adjusted such

that the grids intersect the boundary orthogonally. As a

result the boundary conditions for (31)–(33) are given by:

n ¼ �1; W ¼ 0;
oW
on

¼ 0; C ¼ 0;

oC
on

¼ 0; H ¼ 0; ð40Þ

g ¼ �1; W ¼ 0;
oW
og

¼ 0; C ¼ 0;

oC
og

¼ 0; H ¼ 0: ð41Þ
h2;2; h3;2; . . . ; hNX ;NY Þ : ð52Þ
3. Linear stability analysis

Assuming

Wðn; gÞ ¼ estuðn; gÞ; ð42Þ

Cðn; gÞ ¼ estcðn; gÞ; ð43Þ

Hðn; gÞ ¼ esthðn; gÞ: ð44Þ

Eqs. (31)–(33) become a differential eigenvalue problem,

where s is the eigenvalue determining the stability of the

basic state. The boundary conditions for u, c and h are

the same as those for W, C and H, respectively. As pre-

viously [1–3], the Chebyshev pseudospectral method [5] is

employed to convert the differential eigenvalue problem
to an algebraic eigenvalue problem after imposing

relevant boundary conditions. Using the Chebyshev

pseudospectral method, we can approximate differenti-

ations of a function by matrix multiplications as follows:

oqf
oxq

ðxi; yjÞ ¼
XNXþ1

l¼1

cGX ðqÞ
i;l fl;j; ð45Þ

oqf
oyq

ðxi; yjÞ ¼
XNYþ1

l¼1

cGY ðqÞ
j;l fi;l

ð16 i6NX þ 1; 16 j6NY þ 1Þ; ð46Þ

where ðxi; yjÞ is the Chebyshev collocation point [1], the

grid variable fl;j is the value of f ðn; gÞ at the collocation
point ðnl; gjÞ, NX þ 1 is the total number of grids in the n
direction, NY þ 1 is that in the g direction. The matricescGX ðqÞ

i;l and cGY ðqÞ
j;l have been derived in reference [1]. For

the variables u and c, we impose two separate boundary

conditions on each boundary wall. Therefore, we can

remove the boundary grid values and the outermost

internal grid values of u in terms of the remaining

internal grid values. For example, the boundary condi-

tions (40) for u yields [1]:

u1;j ¼ 0; uNXþ1;j ¼ 0 ð16 j6NY þ 1Þ; ð47Þ

XNXþ1

m¼1

cGX ð1Þ
1;mum;j ¼ 0;

XNXþ1

m¼1

cGX ð1Þ
NXþ1;mum;j ¼ 0

ð16 j6NY þ 1Þ: ð48Þ

Solving Eqs. (47) and (48) simultaneously, we can

express the outermost internal grid values in terms of

the remaining internal grid values [1];

u2;j ¼
XNX�1

m¼3

amum;j;

uNX ;j ¼
XNX�1

m¼3

bmum;j ð16 j6NY þ 1Þ; ð49Þ

where

am �
cGX ð1Þ

1;NX
cGX ð1Þ

NXþ1;m � cGX ð1Þ
NXþ1;NX

cGX ð1Þ
1;mcGX ð1Þ

1;2
cGX ð1Þ

NXþ1;NX � cGX ð1Þ
1;NX

cGX ð1Þ
NXþ1;2

; ð50Þ

bm �
cGX ð1Þ

NXþ1;2
cGX ð1Þ

1;m � cGX ð1Þ
1;2

cGX ð1Þ
NXþ1;mcGX ð1Þ

1;2
cGX ð1Þ

NXþ1;NX � cGX ð1Þ
1;NX

cGX ð1Þ
NXþ1;2

: ð51Þ

In a similar manner, the outermost internal grid values

ui;2 and ui;NY can be represented in terms of the

remaining internal grid values [1]. Therefore, the un-

known grid values to be determined in the resulting

algebraic eigenvalue problem are

x ¼ ðu3;3;u4;3; . . . ;uNX�1;NY�1; c3;3; c4;3; . . . ; cNX�1;NY�1;
T



Fig. 1. The critical Rayleigh number and the boundary sepa-

rating exchange of stabilities and Hopf bifurcation in the �–k
plane for the rectangular domain of dx=dy ¼ 2:0.
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The resulting algebraic eigenvalue problem may be

written as

a � x ¼ sb � x; ð53Þ

where the matrices a and b are constructed by discret-

izing Eqs. (31)–(33) after substituting Eqs. (42)–(44).

The basic state becomes unstable and convective flow

sets in when the real part of s becomes positive. The

critical Rayleigh number is defined as the smallest

Rayleigh number when the largest real part of s is zero.
For Rayleigh–B�enard convection of Newtonian fluids,

when the largest real part of s is zero, the corresponding
imaginary part of s is always zero; i.e., the exchange of

stabilities is valid [7]. On the other hand, the imaginary

part of s may be nonzero at the neutrally stable state for

the Rayleigh–B�enard convection of viscoelastic fluids,

depending on the values of k and � in the constitutive

equations [1–3]. This phenomenon, called the oversta-

bility or Hopf bifurcation, is peculiar to the viscoelastic

fluids and may be exploited to characterize the visco-

elastic fluids. It shall be shown in the sequel that the

shape of domain also affects the occurrence of the Hopf

bifurcation. The matrix eigenvalue problem (53) is

solved by using a standard package such as IMSL. We

adopt a (30 · 15) grids with double precision arithmetic.

Employment of a finer grid system (40 · 20) does not

change the results significantly.
4. Results

Fig. 1 shows the critical Rayleigh number and the

boundary separating the region of exchange of stabili-

ties and that of Hopf bifurcation for the case of iso-

thermal sidewalls in the �–k plane for a rectangular

domain with the aspect ratio dx=dy ¼ 2:0, where dx is

the width and dy is the depth of the domain. In our

previous work [1], we adopt the half depth of the do-

main as the characteristic length when converting the

governing equations to the dimensionless form. In the

present investigation, however, we adopt the depth of

the domain as the characteristic length. Therefore the

Ra in the present work is eight times as large as that in

reference [1], while k in the present work is one fourth

of that in reference [1]. From Fig. 1, we find that the

critical Rayleigh number Rc remains the same regard-

less of ð�; kÞ values when the exchange of stabilities is

valid. This value is actually the critical Rayleigh

number for the Newtonian fluids [1]. As � decreases or

k increases, the overstability occurs, and Rc decreases

rapidly as � decreases or k increases. The Deborah

number k indicates the elasticity of the fluid, which is

an important mechanism that induces overstability.

Fig. 2 shows the critical Rayleigh number for the as-

pect ratio in the range 1–4, when k ¼ 0:0 (Newtonian
fluids), ð�; kÞ ¼ ð0:6; 0:0075Þ and ð�; kÞ ¼ ð0:2; 0:1Þ, for

the case of adiabatic sidewalls ðoH
ox ¼ 0Þ and isothermal

sidewalls (H ¼ 0), respectively. From Ref. [1] (adiabatic

sidewalls) and Fig. 1 of the present work (isothermal

sidewalls), we find that the exchange of stabilities is

valid for the case ð�; kÞ ¼ ð0:6; 0:0075Þ, while Hopf

bifurcation occurs for ð�; kÞ ¼ ð0:2; 0:1Þ when dx=dy ¼
2:0 for both thermal boundary conditions. The adia-

batic case has been extensively investigated in our

previous work [1] and we shall concentrate on the

isothermal case in the present investigation. As shown

in Fig. 2, Rc decreases as the aspect ratio increases for

both cases. As the aspect ratio is reduced, the con-

vective motion is inhabited by the sidewalls. Therefore,

a larger Rayleigh number is required to induce con-

vection at a smaller aspect ratio. The case of isothermal

sidewalls has higher Rc values than that of adiabatic

sidewalls, especially for smaller values of the aspect

ratio, since there is heat efflux through the sidewalls for

the former case. It is also shown that the instability is

incurred at lower Rc for Hopf bifurcation than for the

exchange of stabilities. For the case of isothermal

sidewalls (Fig. 2(b)), the curve for ð�; kÞ ¼ ð0:2; 0:1Þ and
that for ð�; k ¼ ð0:6; 0:0075Þ merge at dx=dy ¼ 2:9,
which implies that the instability mode switches from

Hopf bifurcation to exchange of stabilities at this as-

pect ratio when ð�; kÞ ¼ ð0:2; 0:1Þ. Namely, there is a

tendency towards Hopf bifurcation at smaller aspect

ratio. We may interpret this phenomenon as follows.
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Fig. 2. Critical Rayleigh number versus aspect ratio for the case of adiabatic sidewalls (a) and isothermal sidewalls (b).
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At a smaller aspect ratio, convection sets in at a higher

Rayleigh number or at a more energetic state. The

intensified energy state of the fluid triggers the elasticity

of fluid, resulting in the oscillatory convection. Each

curve in Fig. 2 consists of several piecewise continuous

smooth curves, each smooth section of the curve cor-

responding to a particular mode number, i.e., number

of convection cells at onset of instability. The mode

number increases discretely as the aspect ratio dx=dy
increases. For example, the number of convection cells

around dx=dy ¼ 2 is two. It is interesting to note that Rc
decreases monotonically with respect to dx=dy for the

case of isothermal sidewalls, while Rc increases for a

short interval of dx=dy before the number of cells in-

creases and then Rc drops again after the cell number

increases for the case of adiabatic sidewalls. This dif-

ference is caused by the formation of small satellite

convection cells near the sidewalls before the number

of convection cells increases for the isothermal case.

For example, the number of cells increases from one to

two around dx=dy � 1:65 for the case of exchange of

stabilities as shown in Fig. 2. For the adiabatic case,

the Rc increases for 1:36 dx=dy 6 1:65 owing to the

competition between one-cell mode and two-cell mode.

On the other hand, small satellite cells begin to appear

near the sidewalls for this range of aspect ratio in the

isothermal case owing to the efflux of heat and, as a

result, the Rc does not increase before switching to the

two-cell mode at dx=dy � 1:65. To visualize this, we

show in Fig. 3 the convection patterns at various aspect

ratios for the cases of adiabatic sidewalls and isother-

mal sidewalls at various aspect ratios when

ð�; kÞ ¼ ð0:6; 0:0075Þ.
From now on, we consider the effects of domain

irregularity on the convection. Only sidewall distortion

is considered while keeping the top and bottom

boundaries flat, which keeps oT s=ox identically zero
and thus makes the basic state motionless. Fig. 4 shows

the critical Rayleigh number and the boundary sepa-

rating exchange of stabilities and Hopf bifurcation in

the �–k plane for the irregular domain depicted in the

same figure. Based on the results of Fig. 2, we easily

expect that the critical Rayleigh number decreases for

the domain with bulged sidewalls since it has a similar

effect to the increased aspect ratio. Fig. 4 reveals that

this domain has lower Rc than the rectangular one as

depicted in Fig. 1. Furthermore, the minimum Deborah

number kmin where the Hopf bifurcation occurs is

raised to 0.082 from kmin ¼ 0:078 of the case of rect-

angular domain (cf. Fig. 1). This is also consistent with

the previous finding that there is a tendency towards

Hopf bifurcation at smaller aspect ratio. Next, we

consider another domain with sinusoidally distorted

sidewalls, whose volume remains the same as that of

the rectangular box of dx=dy ¼ 2:0. Because the dis-

torted sidewalls inhabit fluid motion, it is expected that

this domain has a larger Rc value than that of the

rectangular domain. Fig. 5 shows the critical Rayleigh

number and the boundary separating exchange of sta-

bilities and Hopf bifurcation in the �–k plane for this

domain. As expected the critical Rayleigh number is

increased as compared to that of the rectangular do-

main depicted in Fig. 1. On the other hand, the mini-

mum Deborah number that induces Hopf bifurcation,

kmin, is lowered to about 0.076. Since the Rc increases

as dx=dy decreases as shown in Fig. 1, the previous

assertion that smaller aspect ratio tends to induce Hopf

bifurcation may be rephrased as follows. If instability

sets in at a higher Rayleigh number for a specific shape

of the domain, the minimum Deborah number where

Hopf bifurcation can be induced, kmin, takes a lower

value. In the sequel, we investigate this assertion sys-

tematically employing various irregular domains. Fig.

6(a) shows the critical eigenfunction, W, and critical
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Rayleigh number for the shape of Fig. 5 when

ð�; kÞ ¼ ð0:2; 0:3Þ for various degree of distortion. These
values of viscoelastic parameters correspond to the

occurrence of Hopf bifurcation. It is shown that the Rc
increases as the distortion of the sidewalls becomes

larger. Fig. 6(b) shows the relation between kmin, the

minimum Deborah number where Hopf bifurcation is

incurred for the domains under consideration, and the

critical Rayleigh number Rc at this value of Deborah

number. As the distortion becomes larger, Rc increases

and kmin decreases. This is consistent with the previous

assertion that kmin takes a lower value as the Rc, where
the Hopf bifurcation sets in, takes a higher value. Fig.

7(a) and (b) plot similar results to those of Fig. 6(a) and

(b) for the case of dx=dy ¼ 1:0. Based on previous results,

it is expected that overstability is also valid for

ð�; kÞ ¼ ð0:2; 0:3Þ and dx=dy ¼ 1:0 since it is true for the

larger aspect ratio of dx=dy ¼ 2:0 (Fig. 6). This has been

confirmed by solving the eigenvalue problem for these

parameter values. The resulting velocity eigenfunctions

W are shown in Fig. 7(a). The critical Rayleigh numbers

for dx=dy ¼ 1:0 are found to be higher than those for

dx=dy ¼ 2:0. As previously, Rc increases with respect to

the distortion ratio D for the present shape. Fig. 7(b) also

reveals that Rc increases and kmin decreases as the dis-

tortion becomes larger. For completeness, we plot similar

results for the case of dx=dy ¼ 0:5 in Fig. 8(a) and (b).
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5. Conclusion

We have investigated the linear hydrodynamic sta-

bility problems of viscoelastic fluids in arbitrary finite

domains. Special interest is to find a shape where the

Hopf bifurcation occurs at a small Deborah number. It

has been found that the geometric shape affects the onset

of convection appreciably. Also investigated is the dif-

ference in the switching pattern of cell numbers as the

aspect ratio varies, between the isothermal sidewalls and

the adiabatic sidewalls.

In general, the critical Rayleigh number decreases

as the aspect ratio increases or the domain’s sidewall

distorts in such a way that its virtual aspect ratio in-

creases as in the case of Fig. 4. The sidewall distortion

in Fig. 5 has the effect of decreased aspect ratio. It is

found that smaller aspect ratio tends to induce Hopf

bifurcation. It is also found that the minimum Debo-

rah number where Hopf bifurcation can be induced

takes a lower value if instability sets in at a higher

Rayleigh number. The results of the present investi-

gation may be exploited to design shapes of convection

box where Hopf bifurcation occurs at realistic low

values of Deborah number, which will enhance the

usefulness of the natural convection system as a rhe-

ometry tool.
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